CHAPTER 20 TESTING FOR WEBAPPS 601

Securily testing incorporates a series of tests designed to exploit vulnerabilities in
the WebApp and its environment. The intent is to demonstrate that a security breach
is possible.

Performance testing encompasses a series of tests that are designed to assess
(1) how WebApp response time and reliability are affected by increased user traffic,
(2) which WebApp components are responsible for performance degradation and
what usage characteristics cause degradation to occur, and (3) how performance
degradation impacts overall WebApp objectives and requirements.

o s §

WebApp Testing
1. Review stakeholder requirements. 5. Perform “unit” tests.
Identify key user goals and objectives. Review content for syntax and semantics errors.
Review use-cases for each user Review content for proper clearances and
category. permissions.
Establish priorities to ensure that each user goal and Test interface mechanisms for correct operation.
obijective will be adequately tested. Test each component (e.g., scrip#) fo ensure proper
Define WebApp testing strategy by describing the function.
types of fests {Section 20.2) that will be conducted. 6. Perform “integration” tests.
Develop a test plan. Test interface semantics against use-cases.
Define a fest schedule and assign responsibilities Conduct navigation tests.
for each test. 7. Perform configuration tests.
Specify automated tools for testing. Assess client-side configuration compatibility.
Define acceptance criteria for each class of test. Assess server-side configurations.
Specify defect tracking mechanisms. 8. Conduct performance fests.
Define problem reporting mechanisms. 9. Conduct security tests.

/

CoveB

Although formal
technical reviews are
not a part of festing,
confent review should
be performed to
ensure that content
has quality.

Errors in WebApp content can be as trivial as minor typographical errors or as sig-
nificant as incorrect information, improper organization, or violation of intellectual
property laws. Content testing attempts to uncover these and many other problems
before the user encounters them.

Content testing combines both reviews and the generation of executable test cases.
Review is applied to uncover semantic errors in content (discussed in Section 20.3.1).
Executable testing is used to uncover content errors that can be traced to dynamically
derived content driven by data acquired from one or more databases.

20.3.1 Content Testing Objectives

Content testing has three important objectives: (1) to uncover syntactic errors (e.g., ty-
pos, grammar mistakes) in text-based documents, graphical representations, and

602

[
e,
POINT
Content fesfing
objectives are (1) to
uncover syntactic errors
in confent, (2) to
uncover semantic
enors, (3) to find
structural errors,

AR What
questions
should be asked
and answered fo
uncover semantic
errors in content?

PART THREE APPLYING WEB ENGINEERING

other media, (2) to uncover semantic errors (i.e., errors in the accuracy or complete-
ness of information) in any content object presented as navigation occurs, and (3) to
find errors in the organization or structure of content that is presented to the end-user.

To accomplish the first objective, automated spelling and grammar checkers may
be used. However, many syntactic errors evade detection by such tools and must be
discovered by a human reviewer (tester). As we noted in the preceding section, copy
editing is the single best approach for finding syntactic errors.

Semantic testing focuses on the information presented within each content ob-
ject. The reviewer (tester) must answer the following questions:

e Is the information factually accurate?

¢ Is the information concise and to the point?

o Is the layout of the content object easy for the user to understand?
¢ Can information embedded within a content object be found easily?

e Have proper references been provided for all information derived from other
sources?

o Is the information presented consistent internally and consistent with infor-
mation presented in other content objects?

e Is the content offensive, misleading, or does it open the door to litigation?
e Does the content infringe on existing copyrights or trademarks?

e Does the content contain internal links that supplement existing content? Are
the links correct?

o Does the aesthetic style of the content conflict with the aesthetic style of the
interface?

Obtaining answers to each of these questions for a large WebApp (containing hun-
dreds of content objects) can be a daunting task. However, failure to uncover se-
mantic errors will shake the user’s faith in the WebApp and can lead to failure of the
Web-based application.

Content objects exist within an architecture that has a specific style (Chapter 19).
During content testing, the structure and organization of the content architecture is
tested to ensure that required content is presented to the end-user in the proper or-
der and relationships. For example, the SafeHomeAssured.com WebApp® presents a
variety of information about sensors that are used as part of security and surveillance
products. Content objects provide descriptive information, technical specifications,
a photographic representation and related information. Tests of the SafeHomeAs-
sured.com content architecture strive to uncover errors in the presentation of this in-
formation (e.g., a description of Sensor X is presented with a photo of Sensor Y).

5 The SafeHomeAssured.com WebApp has been used as an example throughout Part 3 of this book.

What issues

complicate
database testing
for WebApps?

CHAPTER 20 TESTING FOR WEBAPPS 603

20.3.2 Database Testing

Modern Web applications do much more than present static content objects. In many
application domains, WebApps interface with sophisticated database management
systems and build dynamic content objects that are created in real-time using the
data acquired from a database.

For example, a financial services WebApp can produce complex text-based, tab-
ular, and graphical information about a specific equity (e.g., a stock or mutual fund).
The composite content object that presents this information is created dynamically
after the user has made a request for information about a specific equity. To accom-
plish this, the following steps are required: (1) a large equities database is queried,
(2) relevant data are extracted from the database, (3) the extracted data must be or-
ganized as a content object, and (4) this content object (representing customized in-
formation requested by an end-user) is transmitted to the client environment for
display. Errors can and do occur as a consequence of each of these steps. The ob-
jective of database testing is to uncover these errors.

Database testing for WebApps is complicated by a variety of factors:

1. The original client-side request for information is rarely presented in the form
(e.8., structured query language, SQL) that can be input to a database manage-
ment system (DBMS). Therefore, tests should be designed to uncover errors
made in translating the user’s request into a form that can be processed by
these DBMS.

2. The database may be remote to the server that houses the WebApp. Therefore,
tests that uncover errors in communication between the WebApp and the re-
mote database should be developed.®

3. Raw data acquired from the database must be transmitted to the WebApp server
and properly formatted for subsequent transmittal to the client. Therefore, tests
that demonstrate the validity of the raw data received by the WebApp server
should be developed, and additional tests that demonstrate the validity of the
transformations applied to the raw data to create valid content objects must
also be created.

4. The dynamic content object(s) must be transmitted to the client in a form that
can be displayed to the end-user. Therefore, a series of tests should be de-
signed to (a) uncover errors in the content object format, and (b) test compat-
ibility with different client environment configurations.

Considering these four factors, test case design methods should be applied for each
of the “layers of interaction” [NGUO1] noted in Figure 20.2. Testing should ensure that
(1) valid information is passed between the client and server from the interface layer;

6 These tests can become complex when distributed databases are encountered or when access to a
data warehouse (Chapter 10) is required.

604

PART THREE APPLYING WEB ENGINEERING

Layers of inter-
action

Client layer - user interface - =~ I
HTML scripts

User data
. ,,,S“..: 'L 'ff‘)"' Rt ,J.[!'?Ig',\,

User data <—=SQL
Raw data | SQL

(2) the WebApp processes scripts correctly and properly extracts or formats user
data; (3) user data are passed correctly to a server side data transformation function
that formats appropriate queries (e.g., SQL); (4) queries are passed to a data man-
agement layer’ that communicates with database access routines (potentially lo-
cated on another machine).

Data transformation, data management, and database access layers shown in
Figure 20.2 are often constructed with reusable components that have been vali-
dated separately and as a package. If this is the case, WebApp testing focuses on the
design of test cases to exercise the interactions between the client layer and the first
two server layers (WebApp and data transformation) shown in the figure.

- The user interface layer is tested to ensure that HTML scripts are properly con-
structed for each user query and properly transmitted to the server side. The Web-
App layer on the server side is tested to ensure that user data are properly extracted
from HTML scripts and properly transmitted to the data transformation layer on the
server side.

The data transformation functions are tested to ensure that correct SQL is created
and passed to appropriate data management components.

A detailed discussion of the underlying technology that must be understood to ad-
equately design these database tests is beyond the scope of this book. The interested
reader should see [SCE02], [NGUO1], and [BROO1].

7 The data management layer typically incorporates an SQL call-level interface (SQL-CLI) such as Mi-
crosoft OLE/ADO or Java Database Connectivity (JDBC).

CHAPTER 20 TESTING FOR WEBAPPS 605

" s g-tustomers (whether business or consumer), we are unlikely to have confidence in o Web site that suffers
! frequent downtime, hangs in the middle oluirunsudlon or has a poor sense of usability. Testing, therefore, husa -
mm! tole in the overall development process.” P

i

— -

CoraB

With the exception of
WebApp-oriented
specifics, the inferface
strategy noted here is
applicable to all types
of dlient/server
software.

Verification and validation of a WebApp user interface occurs at three distinct points
in the Web engineering process. During formulation and requirements analysis
(Chapters 17 and 18), the interface model is reviewed to ensure that it conforms to
customer requirements and to other elements of the analysis model. During design
(Chapter 19), the interface design model is reviewed to ensure that generic quality
criteria established for all user interfaces have been achieved and that application-
specific interface design issues have been properly addressed. During testing, the fo-
cus shifts to the execution of application-specific aspects of user interaction as they
are manifested by interface syntax and semantics. In addition, testing provides a fi-
nal assessment of usability.

20.4.1 Interface Testing Strategy

The overall strategy for interface testing is to (1) uncover errors related to specific in-
terface mechanisms (e.g., errors in the proper execution of a menu link or the way
data are entered in a form) and (2) uncover errors in the way the interface imple-
ments the semantics of navigation, WebApp functionality, or content display. To ac-
complish this strategy, a number of objectives must be achieved:

e Interface features are tested to ensure that design rules, aesthetics, and related
visual content are available for the user without error. Features include type
fonts, the use of color, frames, images, borders, tables, and related elements
that are generated as WebApp execution proceeds.

e Individual interface mechanisms are tested in a manner that is analogous to unit
testing. For example, tests are designed to exercise all forms, client-side
scripting, dynamic HTML, CGI scripts, streaming content, and application
specific interface mechanisms (e.g., a shopping cart for an e-commerce
application). In many cases, testing can focus exclusively on one of these
mechanisms (the “unit”) to the exclusion of other interface features and
functions.

e Each interface mechanism is tested within the context of a use-case or NSU
(Chapter 19) for a specific user category. This testing approach is analogous to
integration testing (Chapter 13) in that tests are conducted as interface mech-
anisms are integrated to allow a use-case or NSU to be executed.

e The complete interface is tested against selected use-cases and NSUs to uncover
errors in the semantics of the interface. This testing approach is analogous to

Cova

External link testing
should occur
throughout the life of
the WebApp. Part of o
support strategy should
be regularly scheduled
link tests.

enma’

(lientside scripfing
tesfs and fess associ-
ated with dynamic
HTML should be
repeoted whenever @
new version of a
popular browser is
released.

PART THREE APPLYING WEB ENGINEERING

validation testing (Chapter 13) because the purpose is to demonstrate confor-
mance to specific use-case or NSU semantics. It is at this stage that a series
of usability tests are conducted.

e The interface is tested within a variety of environments (e.g., browsers) to ensure
that it will be compatible. In actuality, this series of tests can also be consid-
ered to be part of configuration testing.

20.4.2 Testing Interface Mechanisms

When a user interacts with a WebApp, the interaction occurs through one or more
interface mechanisms. In the paragraphs that follow, we present a brief overview of
testing considerations for each interface mechanism [SPLO1].

Links. Each navigation link is tested to ensure that the proper content object or
function is reached.® The Web engineer builds a list of all links associated with the
interface layout (e.g., menu bars, index items) and then executes each individually.
In addition, links within each content object must be exercised to uncover bad URLs
or links to improper content objects or functions. Finally, links to external WebApps
should be tested for accuracy and also evaluated to determine the risk that they will
become invalid over time.

Forms. At a macroscopic level, tests are performed to ensure that (1) labels cor-
rectly identify fields within the form and that mandatory fields are identified visually
for the user; (2) the server receives all information contained within the form and that
no data are lost in the transmission between client and server; (3) appropriate de-
faults are used when the user does not select from a pull-down menu or set of but-
tons; (4) browser functions (e.g., the “back” arrow) do not corrupt data entered in a
form; and (5) scripts that perform error checking on data entered work properly and
provide meaningful error messages.

At a more targeted level, tests should ensure that (1) form fields have proper width
and data types; (2) the form establishes appropriate safeguards that preclude the user
from entering text strings longer than some predefined maximum; (3) all appropriate
options for pull-down menus are specified and ordered in a way that is meaningful to
the end-user; (4) browser “auto-fill” features do not lead to data input errors; and
(5) the tab key (or some other key) initiates proper movement between form fields.

Client-side scripting. Black-box tests are conducted to uncover any errors in pro-
cessing as the script (e.g., Javascript) is executed. These tests are often coupled with
forms testing, because script input is often derived from data provided as part of
forms processing. A compatibility test should be conducted to ensure that the script-
ing language that has been chosen will work properly in the environmental config-
uration(s) that supports the WebApp. In addition to testing the script itself, Splaine

8 These tests can be performed as part of either interface or navigation testing.

CHAPTER 20 TESTING FOR WEBAPPS 607

and Jaskiel [SPLO1] suggest that “you should ensure that your company’s [WebApp]
standards state the preferred language and version of scripting language to be used
for client-side (and server-side) scripting.”

Dynamic HTML. Each Web page that contains dynamic HTML is executed to en-
sure that the dynamic display is correct. In addition, a compatibility test should be
conducted to ensure that the dynamic HTML works properly in the environmental
configuration(s) that supports the WebApp.

Pop-up windows.®? A series of tests ensure that (1) the pop-up is properly sized
and positioned; (2) the pop-up does not cover the original WebApp window; (3) the
aesthetic design of the pop-up is consistent with the aesthetic design of the interface;
and (4) scroll bars and other control mechanisms appended to the pop-up work, are
properly located, and function as required.

CGl scripts. Black-box tests are conducted with an emphasis on data integrity (as
data are passed to the CGI script) and script processing once validated data have
been received. In addition, performance testing can be conducted to ensure that the
server-side configuration can accommodate the processing demands of multiple in-
vocations of CGI scripts [SPLO1].

Streaming content. Tests should demonstrate that streaming data are up-to-
date, properly displayed, and can be suspended without error and restarted without
difficulty.

Cookies. Both server-side and client-side testing are required. On the server side,
tests should ensure that a cookie is properly constructed (contains correct data) and
properly transmitted to the client side when specific content or functionality is re-
quested. In addition, the proper persistence of the cookie is tested to ensure that its
expiration date is correct. On the client side, tests determine whether the WebApp
properly attaches existing cookies to a specific request (sent to the server).

Application specific interface mechanisms. Tests conform to a checklist of
functionality and features that are defined by the interface mechanism. For example,
Splaine and Jaskiel [SPLO1] suggest the following checklist for shopping cart func-
tionality defined for an e-commerce application:

e Boundary test (Chapter 14) the minimum and maximum number of items that
can be placed in the shopping cart.

e Test a “check out” request for an empty shopping cart.

o Test proper deletion of an item from the shopping cart.

o Test to determine whether a purchase empties the cart of its contents.

9 Pop-ups have become pervasive and are a major irritant to many users. They should be used judi-
ciously or not at all.

608

A worthwhile guide to
usability testing can be
found ot
www.chref.com/
guides/design/
199806/0615jef.
html.

PART THREE APPLYING WEB ENGINEERING

¢ Test to determine the persistence of shopping cart contents (this should be
specified as part of customer requirements).

o Test to determine whether the WebApp can recall shopping cart contents at
some future date (assuming that no purchase was made) if the user requests
that contents be saved.

20.4.3 Testing Interface Semantics

Once each interface mechanism has been “unit” tested, the focus of interface testing
changes to a consideration of interface semantics. Interface semantics testing “eval-
uates how well the design takes care of users, offers clear direction, delivers feed-
back, and maintains consistency of language and approach” [NGUO1].

A thorough review of the interface design model can provide partial answers to
the questions implied by the preceding paragraph. However, each use-case scenario
(for each user category) should be tested once the WebApp has been implemented.
In essence, a use-case becomes the input for the design of a testing sequence. The
intent of the testing sequence is to uncover errors that will preclude a user from
achieving the objective associated with the use-case.

As each use-case is tested, the Web engineering team maintains a checklist to en-
sure that every menu item has been exercised at least one time and that every em-
bedded link within a content object has been used. In addition, the test sequence
should include improper menu selection and link usage. The intent is to determine
whether the WebApp provides effective error handling and recovery.

20.4.4 Usability Tests

Usability testing is similar to interface semantics testing (Section 20.4.3) in the sense
that it also evaluates the degree to which users can interact effectively with the Web-
App and the degree to which the WebApp guides users’ actions, provides meaning-
ful feedback, and enforces a consistent interaction approach. Rather than focusing
intently on the semantics of some interactive objective, usability reviews and tests
are designed to determine the degree to which the WebApp interface makes the
user'’s life easy.'°

Usability tests may be designed by a Web engineering team, but the tests them-
selves are conducted by end-users. The following sequence of steps is applied
[SPLO1]:

1. Define a set of usability testing categories and identify goals for each.

2. Design tests that will enable each goal to be evaluated.

10 The term “user-friendliness” has been used in this context. The problem, of course, is that one
user’s perception of a “friendly” interface may be radically different from another’s.

What charac-

teristics of
usability become
the focus of test-
ing, and what
spedific objectives
are addressed?

CHAPTER 20 TESTING FOR WEBAPPS 609

3. Select participants who will conduct the tests.

4. Instrument participants’ interaction with the WebApp while testing is con-
ducted.

5. Develop a mechanism for assessing the usability of the WebApp.

Usability testing can occur at a variety of different levels of abstraction: (1) the us-
ability of a specific interface mechanism (e.g., a form) can be assessed; (2) the us-
ability of a complete Web page (encompassing interface mechanisms, data objects,
and related functions) can be evaluated; or (3) the usability of the complete WebApp
can be considered.

The first step in usability testing is to identify a set of usability categories and es-
tablish testing objectives for each category. The following test categories and objec-
tives (written in the form of a question) illustrate this approach:'!

Interactivity—Are interaction mechanisms (e.g., pull-down menus, buttons,
pointers) easy to understand and use?

Layout—Are navigation mechanisms, content, and functions placed in a manner
that allows the user to find them quickly?

Readability—Is text well-written and understandable?'? Are graphic representa-
tions easy to understand?

Aesthetics—Do layout, color, typeface, and related characteristics lead to ease of
use? Do users “feel comfortable” with the look and feel of the WebApp?

Display characteristics—Does the WebApp make optimal use of screen size and
resolution?

Time sensitivity—Can important features, functions, and content be used or ac-
quired in a timely manner?

Personalization—Does the WebApp tailor itself to the specific needs of different
user categories or individual users?

Accessibility—Is the WebApp accessible to people who have disabilities?

Within each of these categories, a series of tests is designed. In some cases, the “test”
may be a visual review of a Web page. In other cases interface semantics tests may
be executed again, but in this instance usability concerns are paramount.

As an example, we consider usability assessment for interaction and interface
mechanisms. Constantine and Lockwood [CONO3] suggest that the following list of
interface features should be reviewed and tested for usability: animation, buttons,
color, control, dialogue, fields, forms, frameé, graphics, labels, links, menus,

11 For additional usability questions, see the “usability” sidebar in Chapter 12.

12 The FOG Readability Index and others may be used to provide a quantitative assessment of read-
bility. See http://developer.gnome.org/documents/usability/usability-readability.html for more
details.

610

PART THREE APPLYING WEB ENGINEERING

Qualitative
assessment of
usability

n

o,
POINT

WebApps execute

within a variety

of clientside

environments.

The objective of

compatibility testing

is to uncover errors

associated with o

specific environment

(e.g., browser).

Ease of use

© Easy to learn

) Effective

) Simple

Awkward € Ease of understanding
Difficult to learn @

Misleading ©

Generally uniform
a_Predictable

Predictability

Inconsistent @
Lacking uniformity

messages, navigation, pages, selectors, text, and tool bars. As each feature is as-
sessed, it is graded on a qualitative scale by the users who are doing the testing.
Figure 20.3 depicts a possible set of assessment “grades” that can be selected by
users. These grades are applied to each feature individually, to a complete Web page,
or to the WebApp as a whole.

20.4.5 Compatibility Tests

WebApps must operate within environments that differ from one another. Different
computers, display devices, operating systems, browsers, and network connection
speeds can have a significant influence on WebApp operation. Each computing con-
figuration can result in differences in client-side processing speeds, display resolu-
tion, and connection speeds. Operating system vagaries may cause WebApp
processing issues. Different browsers sometimes produce slightly different results,
regardless of the degree of HTML standardization within the WebApp. Required plug-
ins may or may not be readily available for a particular configuration.

In some cases, small compatibility issues present no significant problems, but in
others, serious errors can be encountered. For example, download speeds may be-
come unacceptable, lack of a required plug-in may make content unavailable,
browser differences can change page layout dramatically, font styles may be altered
and become illegible, or forms may be improperly organized. Compatibility testing
strives to uncover these problems before the WebApp goes on-line.

The first step in compatibility testing is to define a set of “commonly encountered”
client-side computing configurations and their variants. In essence, a tree structure
is created, identifying each computing platform, typical display devices, the operat-
ing systems supported on the platform, the browsers available, likely Internet con-
nection speeds, and similar information. Next, the Web engineering team derives a
series of compatibility validation tests, derived from existing interface tests, naviga-

CHAPTER 20 TESTING FOR WEBAPPS 611

tion tests, performance tests, and security tests. The intent of
cover errors or execution problems that can be traced to configifefie

SAFeHoOME

Component-level testing, also called function testing, focuses on a set of tests that at-
tempt to uncover errors in WebApp functions. Each WebApp function is a software
module (implemented in one of a variety of programming or scripting languages)
and can be tested using black-box (and, in some cases, white-box) techniques dis-
cussed in Chapter 14.

Component-level test cases are often driven by forms-level input. Once forms
data are defined, the user selects a button or other control mechanism to initiate ex-
ecution. The following test case design methods (Chapter 14) are typical:

612

PART THREE APPLYING WEB ENGINEERING

e Equivalence partitioning—The input domain of the function is divided into
input categories or classes from which test cases are derived. The input form
is assessed to determine what classes of data are relevant for the function.
Test cases for each class of input are derived and executed while other
classes of input are held constant. For example, an e-commerce application
may implement a function that computes shipping charges. Among a variety
of shipping information provided via a form is the user’s postal code. Test
cases are designed in an attempt to uncover errors in postal code processing
by specifying postal code values that might uncover different classes of errors
(e.g., an incomplete postal code, a correct postal code, a nonexistent postal
code, an erroneous postal code format).

e Boundary value analysis—Forms data are tested at their boundaries. For
example, the shipping calculation function noted previously requests the
maximum number of days required for product delivery. A minimum of 2
days and a maximum of 14 are noted on the form. However, boundary value
tests might input values of 0; 1, 2, 13, 14, and 15 to determine how the
function reacts to data at and outside the boundaries of valid input."

e Path testing—If the logical complexity of the function is high,'* path testing (a
white-box test case design method) can be used to ensure that every inde-
pendent path in the program has been exercised.

In addition to these test case design methods, a technique called forced error testing
[NGUO1] is used to derive test cases that purposely drive the WebApp component
into an error condition. The purpose is to uncover errors that occur during error-
handling (e.g., incorrect or nonexistent error messages, WebApp failure as a conse-
quence of the error, erroneous output driven by erroneous input, side-effects that are
related to component processing).

Each component-level test case specifies all input values and the expected output
to be provided by the component. The actual output produced as a consequence of
the test is recorded for future reference during support and maintenance.

In many situations, the correct execution of a WebApp function is tied to proper
interfacing with a database that may be external to the WebApp. Therefore, database
testing becomes an integral part of the component-testing regime. Hower [HOW97]
discusses this when he writes:

Database-driven Web sites can involve a complex interaction among Web browsers, op-
erating systems, plug-in applications, communications protocols, Web servers, data-
bases, [scripting language] programs . . . , security enhancements, and firewalls. Such

13 In this case, a better input design might eliminate potential errors. The maximum number of days
could be selected from a pull-down menu, precluding the user from specifying out-of-bounds input.

14 Logical complexity can be determined by computing cyclomatic complexity of the algorithm. See
Chapter 14 for additional details.

CHAPTER 20 TESTING FOR WEBAPPS 613

complexity makes it impossible to test every possible dependency and everything that
could go wrong with a site. The typical Web site development project will also be on an
aggressive schedule, so the best testing approach will employ risk analysis to determine
where to focus testing efforts. Risk analysis should include consideration of how closely
the test environment will match the real production environment. . . . Other typical con-
siderations in risk analysis include:

e Which functionality in the Web site is most critical to its purpose?
e Which areas of the site require the heaviest database interaction?

e Which aspects of the site’s CGI, applets, ActiveX components, and so on are most
complex?

e What types of problems would cause the most complaints or the worst publicity?
e What areas of the site will be the most popular?
e What aspects of the site have the highest security risks?

Each of the risk-related issues discussed by Hower should be considered when de-
signing test cases for WebApp components and related database functions.

A user travels through a WebApp in much the same way as a visitor walks through
a store or museum. There are many pathways that can be taken, many stops that can
be made, many things to learn and look at, activities to initiate, and decisions to
make. As we have already discussed, this navigation process is predictable in the
sense that every visitor has a set of objectives when he arrives. At the same time, the
navigation process can be unpredictable because the visitor, influenced by some-
thing he sees or learns, may choose a path or initiate an action that is not typical for
the original objective. The job of navigation testing is (1) to ensure that the mecha-
nisms that allow the WebApp user to travel through the WebApp are all functional
and (2) to validate that each navigation semantic unit (NSU) can be achieved by the
appropriate user category.

20.6.1 Testing Navigation Syntax

The first phase of navigation testing actually begins during interface testing. Navi-
gation mechanisms are tested to ensure that each performs its intended function.
Splaine and Jaskiel [SPLO1] suggest that each of the following navigation mecha-
nisms should be tested:

e Navigation links—internal links within the WebApp, external links to other
WebApps, and anchors within a specific Web page should be tested to

614

What

questions
must be asked
and answered
as each NSU is
tested?

PART THREE APPLYING WEB ENGINEERING

ensure that proper content or functionality is reached when the link is
chosen.

e Redirects—these links come into play when a user requests a nonexistent
URL or selects a link whose destination has been removed or whose name
has changed. A message is displayed for the user, and navigation is redi-
rected to another page (e.g., the home page). Redirects should be tested by

' requesting incorrect internal links or external URLs and assessing how the
WebApp handles these requests.

e Bookmarks—although bookmarks are a browser function, the WebApp
should be tested to ensure that a meaningful page title can be extracted as
the bookmark is created.

e Frames and framesets—each frame contains the content of a specific Web
page; a frameset contains multiple frames and enables the display of multiple
Web pages at the same time. Because it is possible to nest frames and
framesets within one another, these navigation and display mechanisms
should be tested for correct content, proper layout and sizing, download
performance, and browser compatibility.

e Site maps—entries should be tested to ensure that the link takes the user to
the proper content or functionality.

e Internal search engines—complex WebApps often contain hundreds or even
thousands of content objects. An internal search engine allows the user to
perform a keyword search within the WebApp to find needed content. Search
engine testing validates the accuracy and completeness of the search, the
error-handling properties of the search engine, and advanced search features
(e.g., the use of Boolean operators in the search field).

Some of the tests noted can be performed by automated tools (e.g., link checking)
while others are designed and executed manually. The intent throughout is to ensure
that errors in navigation mechanics are found before the WebApp goes on-line.

20.6.2 Testing Navigation Semantics

In Chapter 19 we defined a navigation semantic unit (NSU) as “a set of information
and related navigation structures that collaborate in the fulfillment of a subset of re-
lated user requirements” [CAC02]. Each NSU is defined by a set of navigation paths
(called “ways of navigating”) that connect navigation nodes (e.g., Web pages, con-
tent objects, or functionality). Taken as a whole, each NSU allows a user to achieve
specific requirements defined by one or more use-cases for a user category. Naviga-
tion testing exercises each NSU to ensure that these requirements can be achieved.

As each NSU is tested, the Web engineering team must answer the following
questions:

e Is the NSU achieved in its entirety without error?

Cova

If NSUs have not been
created as part of Web
engingering analysis or
design, you can apply
use-cases for the
design of navigation
test cases. The same
set of questions are
asked and answered.

CHAPTER 20 TESTING FOR WEBAPPS 615

¢ Is every navigation node (defined for a NSU) reachable within the context of
the navigation paths defined for the NSU?

o If the NSU can be achieved using more than one navigation path, has every
relevant path been tested?

o If guidance is provided by the user interface to assist in navigation, are direc-
tions correct and understandable as navigation proceeds?

e Is there a mechanism (other than the browser “back” arrow) for returning to
the preceding navigation node and to the beginning of the navigation path?

e Do mechanisms for navigation within a large navigation node (i.e., a long
Web page) work properly?

o If a function is to be executed at a node and the user chooses not to provide
input, can the remainder of the NSU be completed?

o If a function is executed at a node and an error in function processing occurs,
can the NSU be completed?

o Is there a way to discontinue the navigation before all nodes have been
reached, but then return to where the navigation was discontinued and
proceed from there?

e Is every node reachable from the site map? Are node names meaningful to
end-users?

o If a node within a NSU is reached from some external source, is it possible to
process to the next node on the navigation path? Is it possible to return to the
previous node on the navigation path?

o Does the user understand his location within the content architecture as the
NSU is executed?

Navigation testing, like interface and usability testing, should be conducted by as
many different constituencies as possible. Early stages of testing are conducted by
Web engineers, but later stages should be conducted by other project stakeholders,
an independent testing team, and ultimately, by nontechnical users. The intent is to
exercise WebApp navigation thoroughly.

Configuration variability and instability are important factors that make Web engi-
neering a challenge. Hardware, operating system(s), browsers, storage capacity,
network communication speeds, and a variety of other client-side factors are diffi-
cult to predict for each user. In addition, the configuration for a given user can
change (e.g., OS updates, new ISP and connection speeds) on a regular basis. The
result can be a client-side environment that is prone to errors that are both subtle
and significant. One user’s impression of the WebApp and the manner in which he

616

What

questions
must be asked
and answered as
server-side
configuration

testing is
conducted?

PART THREE APPLYING WEB ENGINEERING

interacts with it can differ significantly from another user’s experience, if both users
are not working within the same client-side configuration.

The job of configuration testing is not to exercise every possible client-side con-
figuration. Rather, it is to test a set of probable client-side and server-side configu-
rations to ensure that the user experience will be the same on all of them and to
isolate errors that may be specific to a particular configuration.

20.7.1 Server-Side Issues

On the server side, configuration test cases are designed to verify that the projected
server configuration (i.e., WebApp server, database server, operating system(s), fire-
wall software, concurrent applications) can support the WebApp without error. In
essence, the WebApp is installed within the server-side environment and tested with
the intent of finding configuration-related errors.

As server-side configuration tests are designed, the Web engineer should con-
sider each component of the server configuration. Among the questions that need to
be asked and answered during server-side configuration testing are:

o Is the WebApp fully compatible with the server OS?

e Are system files, directories, and related system data created correctly when
the WebApp is operational?

¢ Do system security measures (e.g., firewalls or encryption) allow the
WebApp to execute and service users without interference or performance
degradation? '

e Has the WebApp been tested with the distributed server configuration'® (if
one exists) that has been chosen?

e Is the WebApp properly integrated with database software? Is the WebApp
sensitive to different versions of database software?

¢ Do server-side WebApp scripts execute properly?

e Have system administrator errors been examined for their affect on WebApp
operations?

e If proxy servers are used, have differences in their configuration been
addressed with on-site testing?

20.7.2 Client-Side Issues

On the client side, configuration tests focus more heavily on WebApp compatibility
with configurations that contain one or more permutation of the following compo-
nents [NGUO1]:

15 For example, a separate application server and database server may be used. Communication be-
tween the two machines occurs across a network connection.

CHAPTER 20 TESTING FOR WEBAPPS 617

e Hardware—CPU, memory, storage, and printing devices.

e Operating systems—Linux, Macintosh OS, Microsoft Windows, a mobile-
based OS.

e Browser software—Internet Explorer, Mozilla/Netscape, Opera, Safari, and
others.

e User interface components—Active X, Java applets, and others.
e Plug-ins—QuickTime, RealPlayer, and many others.
e Connectivity—cable, DSL, regular modem, T1.

In addition to these components, other variables include networking software, the
vagaries of the ISP, and applications running concurrently.

To design client-side configuration tests, the Web engineering team must reduce
the number of configuration variables to a manageable number.'® To accomplish
this, each user category is assessed to determine the likely configurations to be en-
countered within the category. In addition, industry market share data may be used
to predict the most likely combinations of components. The WebApp is then tested
within these environments.

WebApp security is a complex subject that must be fully understood before effective
security testing can be accomplished.!” WebApps and the client-side and server-side
environments in which they are housed represent an attractive target for external
hackers, disgruntled employees, dishonest competitors, and anyone else who
wishes to steal sensitive information, maliciously modify content, degrade perform-
ance, disable functionality, or embarrass a person, organization, or business.

Security tests are designed to probe vulnerabilities of the client-side environment,
the network communications that occur as data are passed from client to server and
back again, and the server-side environment. Each of these domains can be at-
tacked, and it is the job of the security tester to uncover weaknesses that can be ex-
ploited by those with the intent to do so.

16 Running tests on every possible combination of configuration components is far too time consuming.
17 Books by Trivedi [TRE03], McClure and his colleagues [MCCO3], and Garfinkel and Spafford
[GARO2] provide useful information about the subject.

618 PART THREE APPLYING WEB ENGINEERING

e On the client-side, vulnerabilities can often be traced to pre-existing bugs in
AD "“’ browsers, e-mail programs, or communication software. Nguyen [NGUO1] describes

If the Webdpp is a typical security hole:

business critical,

maintains sensitive One of the commonly mentioned bugs is Buffer Overflow, which allows malicious code
data, or is a likely to be executed on the client machine. For example, entering a URL into a browser that is
forget of hackers, its a much longer than the buffer size allocated for the URL will cause a memory overwrite
good idea o outsource (buffer overflow) error if the browser does not have error detection code to validate the

securily fesfing r? a length of the input URL. A seasoned hacker can cleverly exploit this bug by writing a long
;:"I;“jw who specoizes URL with code to be executed that can cause the browser to crash or alter security set-
tings (from high to low), or, at worst, to corrupt user data.
Another potential vulnerability on the client-side is unauthorized access to cookies
placed within the browser. Web sites created with malicious intent can acquire in-
formation contained within legitimate cookies and use this information in ways that
jeopardize the user’s privacy, or worse, set the stage for identity theft.

Data communicated between the client and server are vulnerable to spoofing.
Spoofing occurs when one end of the communication pathway is subverted by an
entity with malicious intent. For example, a user can be spoofed by a malicious Web
site that acts as if it is the legitimate WebApp server (identical look and feel}. The in-
tent is to steal passwords, proprietary information, or credit data.

On the server-side, vulnerabilities include denial-of-service attacks and mali-
cious scripts that can be passed along to the client side or used to disable server op-
erations. In addition, server-side databases can be accessed without authorization
(data theft).

To protect against these (and many other) vulnerabilities, one or more of the fol-
lowing security elements is implemented [NGUO1]:

a%“ e Firewalls—-a filtering mechanism that is a combination of hardware and
POINT software that examines each incoming packet of information to ensure that it

Securly ests shoud is coming from a legitimate source, blocking any data that are suspect.

be designed to o Authentication—a verification mechanism that validates the identity of all

exercie firewalls, clients and servers, allowing communication to occur only when both sides

authenticaton, are verified.

encryption, and

authorization. e Encryption—an encoding mechanism that protects sensitive data by

modifying it in a way that makes it impossible to read by those with
malicious intent. Encryption is strengthened by using digital certificates that
allow the client to verify the destination to which the data are transmitted.

o Authorization—a filtering mechanism that allows access to the client or
server environment only by those individuals with appropriate authorization
codes (e.g., userlD and password)

The intent of security testing is to expose holes in these security elements that
can be exploited by those with malicious intent. The actual design of security tests

CHAPTER 20 TESTING FOR WEBAPPS 619
requires in-depth knowledge of the inner workings of each security element and
a comprehensive understanding of a full range of networking technologies. In
many cases, security testing is outsourced to firms that specialize in these tech-
nologies.

Gpwcs‘

Some aspects of
WebApp performance,
at least as it is
perceived by the end-
user, are difficult fo
test, including network
loading, the vagaries
of network inferfacing
hardware, and similar
issues.

Nothing is more frustrating than a WebApp that takes minutes to load content when
competitive sites download similar content in seconds. Nothing is more aggravating
than trying to log-in to a WebApp and receiving a “server-busy” message, with the
suggestion that you try again later. Nothing is more disconcerting than a WebApp
that responds instantly in some situations, and then seems to go into an infinite wait-
state in other situations. All of these occurrences happen on the Web every day, and
all of them are performance-related.

Performance testing is used to uncover performance problems that can result from
lack of server-side resources, inappropriate network bandwidth, inadequate data-
base capabilities, faulty or weak operating system capabilities, poorly designed Web-
App functionality, and other hardware or software issues that can lead to degraded
client-server performance. The intent is twofold: (1) to understand how the system
responds to loading (i.e., number of users, number of transactions, or overall data
volume), and (2) to collect metrics that will lead to design modifications to improve
performance.

20.9.1 Performance Testing Objectives

Performance tests are designed to simulate real-world loading situations. As the
number of simultaneous WebApp users grows, or the number of on-line transactions
increases, or the amount of data (downloaded or uploaded) increases, performance
testing will help answer the following questions:

e Does the server response time degrade to a point where it is noticeable and
unacceptable?

e At what point (in terms of users, transactions, or data loading) does perform-
ance become unacceptable?

e What system components are responsible for performance degradation?

e What is the average response time for users under a variety of loading condi-
tions?

e Does performance degradation have an impact on system security?

o Is WebApp reliability or accuracy affected as the load on the system grows?

e What happens when loads that are greater than maximum server capacity
are applied?

620

enwc:‘

If a WebApp uses
multiple servers fo
provide significant
capacity, load festing
must be performed in
a multiserver environ-
ment.

o
e,
POINT
The infent of stress
testing is fo better
understand how o
system fails as it is
stressed beyond its
operational limits.

PART THREE APPLYING WEB ENGINEERING

To develop answers to these questions, two different performance tests are con-
ducted:

e Load testing—real world loading is tested at a variety of load levels and in a
variety of combinations.

e Stress testing—loading is increased to the breaking point to determine how
much capacity the WebApp environment can handle.

Each of these testing strategies is considered in the sections that follow.

20.9.2 Load Testing

The intent of Joad testing is to determine how the WebApp and its server-side envi-
ronment will respond to various loading conditions. As testing proceeds, permuta-
tions to the following variables define a set of test conditions:

N, the number of concurrent users
T, the number of on-line transactions per user per unit time
D, the data load processed by the server per transaction

In every case, these variables are defined within normal operating bounds of the sys-
tem. As each test condition is run, one or more of the following measures are col-
lected: average user response, average time to download a standardized unit of data,
or average time to process a transaction. The Web engineering team examines these
measures to determine whether a precipitous decrease in performance can be traced
to a specific combination of N, T, and D.

Load testing can also be used to assess recommended connection speeds for
users of the WebApp. Overall throughput, P, is computed in the following manner:

P=NXTXD

As an example, consider a popular sports news site. At a given moment, 20,000 con-
current users submit a request (a transaction, T) once every two minutes on aver-
age. Each transaction requires the WebApp to download a new article that averages
3 K bytes in length. Therefore, throughput can be calculated as:

P =120,000 x 0.5 x 3 Kb]/60 = 500 Kbytes/sec
= 4 megabits per second

The network connection for the server would therefore have to support this data rate
and should be tested to ensure that it does.

20.9.3, Stress Testing

Stress testing (Chapter 13) is a continuation of load testing, but in this instance the
variables, N, T, and D are forced to meet and then exceed operational limits. The in-
tent of these tests is to answer each of the following questions:

e Does the system degrade “gently” or does the server shut down as capacity is
exceeded?

CHAPTER 20 TESTING FOR WEBAPPS 621

e Does server software generate “server not available” messages? More
generally, are users aware that they cannot reach the server?

e Does the server queue requests for resources and empty the queue once
capacity demands diminish?

e Are transactions lost as capacity is exceeded?
o Is data integrity affected as capacity is exceeded?

e What values of N, T, and D force the server environment to fail? How does
failure manifest itself? Are automated notifications sent to technical support
staff at the server site?

o If the system does fail, how long will it take to come back on-line?

e Are certain WebApp functions (e.g., compute intensive functionality, data
streaming capabilities) discontinued as capacity reaches the 80 or 90 percent
level?

A variation of stress testing is sometimes referred to as spike/bounce testing
[SPLO1]. In this testing regime, load is spiked to capacity, then lowered quickly to nor-
mal operating conditions, and then spiked again. By bouncing system loading a
tester can determine how well the server can marshall resources to meet very high
demand and then release them when normal conditions reappear (so that they are
ready for the next spike).

Tools Taxonomy for WebApp Testing

-

Q In his paper on the testing of e-commerce Representative tool(s): BMC Software (www.bmc.com)
systems, Lam [LAMO1] presents a useful Debuggers are typical programming tools that find and

taxonomy of automated tools that have direct applicability resolve software defects in the code. They are part of most

for testing in a Web engineering confext. We have modern application development environments.

appended representative tools in each category.'® Representative tool(s):

. . Accelerated Technology (www.acceleratedtechnology.com)
Configuration and content management tools IBM VisualAge Environment www.ibm.com)

manage version and change control of WebApp content JDebugTool | debugtools.com)

objects and F”f'd'ono;l components. Defect management systems record defects and
Rep resentative foo [s): track their status and resolution. Some include reporting
Comprehensive list ot www.daveeaton.com/scm/ tools to provide management information on defect spread

CMTools.html detaba and defect resolution rates.
Database performance tools measure database Representative tool(s):

perfc?rmonce, such as the fime fo perform seleded dotabase EXCEL Quickbugs (www.excelsoftware.com)
queries. These tools facilitate database optimization.

\ /

18 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In addition, tool names are registered trademarks of the companies noted.

622

McCabe TRUETrack (www.mccabe.com)

Rational ClearQuest (www.rational.com)
Network monitoring tools watch the level of network
traffic. They are useful for identifying network bottlenecks
and testing the link between front- and back-end systems.

Representative tool(s):

Comprehensive list at www.slac.stanford.edu/xorg/

nmﬂ:/ nmif-tools.html
Regression testing tools store test cases and test data
and can reapply the test cases affer successive software
changes.

Representative tool(s):

Compuware QARun (www.compuware.com/products/

qgacenter/qarun)

Rational VisualTest (www.rational.com)

Seque Software (www.seque.com)
Site monitoring tools monitor a site’s performance,
often from a user perspective. Use them to compile
statistics such as end-to-end response time and throughput,
and to periodically check a site’s availability.

Representative tool(s):

Keynote Systems (www.keynote. com)
Stress tools help developers explore system behavior
under high levels of operational usage and find a system'’s
breakpoints.

Representative toolfs):

Mercury Interactive (www.merc-int.com)

Scapa Technologies {www.scapatech.com)
System resource monitors are part of most OS
@er and Web server sofqure; they monitor

PART THREE APPLYING WEB ENGINEERING

N

resources such as disk space, CPU usage, and
memory.

Representative toolfs):

Successful Hosting.com (www.successfulhosting.com)

Quest Software Foglight (www.quest.com)

Test data generation tools assist users in generating
test data.

Representative tool(s):

Comprehensive list at www.softwareqatest.com/

qatweb1.html
Test result comparators help compare the results of
one set of testing to that of another set. Use them to check
that code changes have not introduced adverse changes in
system behavior.

Representative tool(s):

Useful list at www.aptest.com/resources.html
Transaction monitors measure the performance of
high-volume transaction processing systems.

Representative fool(s):

QuotiumPro (www.quotium.com)

Software Research eValid (www.soft.com/eValid/index.

html)

Web-site security tools help detect potential security
problems. You can often set up security probing and
monitoring tools to run on a scheduled basis.

Representative tool(s):

Comprehensive list at www.timberlinetechnologies.com/

products/www.html)

_J

The goal of WebApp testing is to exercise each of the many dimensions of WebApp
quality with the intent of finding errors or uncovering issues that may lead to quality
failures. Testing focuses on content, function, structure, usability, navigability, per-
formance, compatibility, interoperability, capacity, and security. Testing also incor-
porates reviews that occur as the WebApp is designed.

The WebApp testing strategy exercises each quality dimension by initially ex-
amining “units” of content, functionality, or navigation. Once individual units have
been validated, the focus shifts to tests that exercise the WebApp as a whole. To
accomplish this, many tests are derived from the users’ perspectives and are driven
by information contained in use-cases. A Web engineering test plan is developed

CHAPTER 20 TESTING FOR WEBAPPS 623

and identifies testing steps, work products (e.g., test cases), and mechanisms for
the evaluation of test results. The testing process encompasses seven different
types of testing.

Content testing (and reviews) focus on various categories of content. The intent
is to uncover both semantic or syntactic errors that affect the accuracy of content or
the manner in which it is presented to the end-user. Interface testing exercises the
interaction mechanisms that enable a user to communicate with the WebApp and
validates aesthetic aspects of the interface. The intent is to uncover errors that result
from poorly implemented interaction mechanisms, or omissions, inconsistencies, or
ambiguities in interface semantics.

Navigation testing applies use-cases, derived as part of the analysis activity, in the
design of test cases that exercise each usage scenario against the navigation design.
Navigation mechanisms are tested to ensure that any errors impeding completion of
a use-case are identified and corrected. Component testing exercises content and
functional units within the WebApp. Each Web page encapsulates content, naviga-
tion links, and processing elements that form a “unit” within the WebApp architec-
ture. These units must be tested.

Configuration testing attempts to uncover errors and/or compatibility problems
that are specific to a particular client or server environment. Tests are then con-
ducted to uncover errors associated with each possible configuration. Security test-
ing incorporates a series of tests designed to exploit vulnerabilities in the WebApp
and its environment. The intent is to find security holes. Performance testing en-
compasses a series of tests that are designed to assess WebApp response time and
reliability as demands on server-side resource capacity increase.

[BROO1] Brown, B., Oracle9i Web Development, McGraw-Hill, 2nd ed., 2001. -

[CACO02] Cachero, C., et al., “Conceptual Navigation Analysis: A Device and Platform Indepen-
dent Navigation Specification,” Proc. 2nd Intl. Workshop on Web-Oriented Technology, June
2002, download from www.dsic.upv.es/~west/iwwost02/papers/cachero.pdf.

[CONO3] Constanting, L., and L. Lockwood, Software for Use, Addison-Wesley, 1999; see also
http://www.foruse.com/.

[GARO2] Garfinkel, S., and G. Spafford, Web Security, Privacy and Commerce, O'Reilly & Associ-
ates, 2002.

[HOW97] Hower, Rick, “Beyond Broken Links,” Internet Systems, 1997 available at
http://www.dbmsmag.com/9707i03.html.

[LAMO1} Lam, W, “Testing E-Commerce Systems: A Practical Guide,” IEEE IT Pro, March/April
2001, pp. 19-28.

[MCC03] McClure, S., S. Shah, and S. Shah, Web Hacking: Attacks and Defense, Addison-Wesley,
2003.

[MILOO] Miller, E., “WebsSite Testing,” 2000, available at http://www.soft.com/ eValid/Technology/
White Papers/website testing.html.

[NGUOO] Nguyen, H., “Testing Web-Based Applications,” Software Testing and Quality Engineer-
ing, May/June, 2000, available at http://www.stgemagazine.com.

624

PART THREE APPLYING WEB ENGINEERING

[NGUO1] Nguyen, H., Testing Applications on the Web, Wiley, 2001.

[SCEQ2] Sceppa, D., Microsoft ADO.NET, Microsoft Press, 2002.

[SPLOI1] Splaine, S., and S. Jaskiel, The Web Testing Handbook, STQE Publishing, 2001.

[TREO3] Trivedi, R., Professional Web Services Security, Wrox Press, 2003.

[WALO3] Wallace, D., 1. Raggett, and J. Aufgang, Extreme Programming for Web Projects, Addison-
Wesley, 2003.

20.1. What is the objective of security testing? Who performs this testing activity?

20.2. In your own words, discuss the objectives of testing in a Web engineering context.

20.3. Compatibility is an important quality dimension. What must be tested to ensure that
compatibility exists for a WebApp?

20.4. Which errors tend to be more serious-—client-side errors or server-side errors? Why?
20.5. Are there any situations in which WebApp testing should be totally disregarded?
20.6. Is it always necessary to develop a formal written test plan? Explain.

20.7. Isit fair to say that the overall WebApp testing strategy begins with user-visible elements
and moves toward technology elements? Are there exceptions to this strategy?

20.8. Assume that you are developing an on-line pharmacy (CornerPharmacy.com) that
caters to senior citizens. The pharmacy provides typical functions, but also maintains a data-
base for each customer so that it can provide drug information and warn of potential drug in-
teractions. Discuss any special usability tests for this WebApp.

20.9. Describe the steps associated with database testing for a WebApp. Is database testing
predominantly a client-side or server-side activity?

20.10. Is it possible to test every configuration that a WebApp is likely to encounter on the
server-side? On the client-side? If it is not, how does a Web engineer select a meaningful set of
configuration tests?

20.11. What elements of the WebApp can be “unit tested”"? What types of tests must be con-
ducted only after the WebApp elements are integrated?

-20.12. CornerPharmacy.com (Problem 20.8) has become wildly successful and the number of

users has increased dramatically in the first two months of operation. Draw a graph that depicts
probable response time as a function of number of users for a fixed set of server-side resources.
Label the graph to indicate points of interest on the “response curve.”

20.13. what is the difference between testing for navigation syntax and for navigation se-
mantics?

20.14. What is the difference between testing that is associated with interface mechanisms
and testing that addresses interface semantics?

20.15. Is content testing really testing in a conventional sense? Explain.

20.16. Assume that you have implemented a drug interaction checking function for Corner-
Pharmacy.com (Problem 20.8). Discuss the types of component-level tests that would have to
be conducted to ensure that this function works properly. [Note: a database would have to be
used to implement this function.]

20.17. Inresponse to its success CornerPharmacy.com (Problem 20.8) has implemented a spe-
cial server solely to handle prescription refills. On average, 1000 concurrent users submit a re-

CHAPTER 20 TESTING FOR WEBAPPS 625

refill request once every two minutes. The WebApp downloads a 500 byte block of data in re-
sponse. What is the approximate required throughput for this server in megabits per second?

20.18. What is the difference between load testing and stress testing?

The literature for WebApp testing is still evolving. Books by Ash (The Web Testing Companion,
Wiley, 2003), Dustin and his colleagues (Quality Web Systems, Addison-Wesley, 2002), Nguyen
[NGUOL1}, and Splaine and Jaskiel [SPLO1] are among the most complete treatments of the sub-
ject published to date. Mosley (Client-Server Software Testing on the Desktop and the Web,
Prentice-Hall, 1999) addresses both client-side and server-side testing issues.

Useful information on WebApp testing strategies and methods, as well as a worthwhile dis-
cussion of automated testing tools is presented by Stottlemeyer (Automated Web Testing Toolkit,
Wiley, 2001). Graham and her colleagues (Software Test Automation, Addison-Wesley, 1999)
present additional material on automated tools.

Nguyen and his colleagues (Testing Applications for the Web, second edition, Wiley, 2003)
have developed a major update to [NGUO1] and provide unique guidance for testing mobile
applications. Although Microsoft (Performance Testing Microsoft .NET Web Applications, Mi-
crosoft Press, 2002) focuses predominantly on its .NET environment, its comments on per-
formance testing can be useful to anyone interested in the subject.

Splaine (Testing Web Security, Wiley, 2002), Klevinsky and his colleagues (Hack I.T.: Security
through Penetration Testing, Addison-Wesley, 2002), Chirillo (Hack Attacks Revealed, second edi-
tion, Wiley, 2003), and Skoudis (Counter Hack, Prentice-Hall, 2001) provide much useful infor-
mation for those who must design security tests.

A wide variety of information sources on testing for Web engineering is available on the In-
ternet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

n this part of Software Engineering: A Practitioner’s Approach, we

consider the management techniques required to plan, orga-

nize, monitor, and control software projects. In the chapters
that follow, we address the following questions:

e How must people, process, and problems be managed during
a software project?

¢ How can software metrics be used to manage a software proj-
ect and the software process?

e How do we estimate effort, cost, and project duration?

e What techniques can be used to formally assess the risks that
can impact project success?

¢ How does a software project manager select a set of software
engineering work tasks? :

* How is a project schedule created?
e What is quality management?
e Why are formal technical reviews so important?

* How is change managed during the development of computer
software and after delivery to the customer?

Once these questions are answered, you'll be better prepared to
manage software projects in a way that will lead to timely delivery
of a high-quality product.

PROJECTS

627

KEey
CONCEPTS

ogile feums

coordination
aitical practices
people
problem
decomposition

628

- PROJECT
| MANAGEMENT

n the preface to his book on software project management, Meiler Page-Jones
[PAG85] makes a statement that can be echoed by many software engineering
consultants:

I've visited dozens of commercial shops, both good and bad, and I've observed scores
of data processing managers, again, both good and bad. Too often, I've watched in
horror as these managers futilely struggled through nightmarish projects, squirmed
under impossible deadlines, or delivered systems that outraged their users and went
on to devour huge chunks of maintenance time.

What Page-Jones describes are symptoms that result from an array of manage-
ment and technical problems. However, if a post mortem were to be conducted
for every project, it is very likely that a consistent theme would be encountered:
project management was weak.

In this chapter and the six that follow, we consider the key concepts that lead to
effective software project management. This chapter considers basic software proj-
ect management concepts and principles. Chapter 22 presents process and project
metrics, the basis for effective management decision making. The techniques that
are used to estimate cost, define a realistic schedule, and establish an effective proj-
ect plan are discussed in Chapters 23 and 24. The management activities that lead to

. effective risk monitoring, mitigation, and management are presented in Chapter 25.

Finally, Chapters 26 and 27 consider techniques for ensuring quality as a project is
conducted and managing changes throughout the life of an application.

CHAPTER 21 PROJECT MANAGEMENT 629

Effective software project management focuses on the four P's: people, product,
process, and project. The order is not arbitrary. The manager who forgets that soft-
ware engineering work is an intensely human endeavor will never have success in
project management. A manager who fails to encourage comprehensive stakeholder
communication early in the evolution of a project risks building an elegant solution
for the wrong problem. The manager who pays little attention to the process runs the
risk of inserting competent technical methods and tools into a vacuum. The manager
who embarks without a solid project plan jeopardizes the success of the product.

21.1.1 The People

The cultivation of motivated, highly skilled software people has been discussed since
the 1960s (e.g., [COU80], [WIT94], [DEM98]). In fact, the “people factor” is so impor-
tant that the Software Engineering Institute has developed a people management ca-
pability maturity model (PM-CMM), “to enhance the readiness of software
organizations to undertake increasingly complex applications by helping t& attract,
grow, motivate, deploy, and retain the talent needed to improve their software de-
velopment capability” [CUR94].

The people management maturity model defines the following key practice areas
for software people: recruiting, selection, performance management, training, com-
pensation, career development, organization and work design, and team/culture
development. Organizations that achieve high levels of maturity in the people man-
agement area have a higher likelihood of implementing effective software engineer-
ing practices.

The PM-CMM is a companion to the Software Capability Maturity Model Integra-
tion (Chapter 2) that guides organizations in the creation of a mature software
process. Issues associated with people management and structure for software proj-
ects are considered later in this chapter.

630

Cova$

In this context, the
term product is used fo
encompass any
software that is built at
the request of others.
It includes not only
shrink-wrapped
software products, but
also computerbased
systems, embedded
software, WebApps,
ond problem-solving
software (e.g.,
programs for
engineering/scientific
problem solving).

ancs‘

Those who adhere

to the agile process
philosophy (Chapter 4)
argue that their
process is leaner than
otfers. That may be
true, but they still have
a process, ond agile
software engineering
still requires discipline.

PART FOUR MANAGING SOFTWARE PROJECTS

21.1.2 The Product

Before a project can be planned, product objectives and scope should be established,
alternative solutions should be considered, and technical and management con-
straints should be identified. Without this information, it is impossible to define rea-
sonable (and accurate) estimates of the cost, an effective assessment of risk, a
realistic breakdown of project tasks, or a manageable project schedule that provides
a meaningful indication of progress.

The software developer and customer must meet to define product objectives and
scope. In many cases, this activity begins as part of the system engineering or business
process engineering (Chapter 6) and continues as the first step in software requirements
engineering (Chapter 7). Objectives identify the overall goals for the product (from the
customer’s point of view) without considering how these goals will be achieved. Scope
identifies the primary data, functions, and behaviors that characterize the product, and
more importantly, attempts to bound these characteristics in a quantitative manner.

Once the product objectives and scope are understood, alternative solutions are
considered. Although relatively little detail is discussed, the alternatives enable man-
agers and practitioners to select a “best” approach, given the constraints imposed by
delivery deadlines, budgetary restrictions, personnel availability, technical inter-
faces, and myriad other factors.

21.1.3 The Process

A software process (Chapters 2, 3, and 4) provides the framework from which a com-
prehensive plan for software development can be established. A small number of
framework activities are applicable to all software projects, regardless of their size or
complexity. A number of different task sets—tasks, milestones, work products, and
quality assurance points—enable the framework activities to be adapted to the char-
acteristics of the software project and the requirements of the project team. Finally,
umbrella activities—such as software quality assurance, software configuration man-
agement, and measurement—overlay the process model. Umbrella activities are in-
dependent of any one framework activity and occur throughout the process.

21.1.4 The Project

We conduct planned and controlled software projects for one primary reason—it is the
only known way to manage complexity. And yet, we still struggle. In 1998, industry data
indicated that 26 percent of software projects failed outright and 46 percent experi-
enced cost and schedule overruns [REE99]. Although the success rate for software proj-
ects has improved somewhat, our project failure rate remains higher than it should be.!

1 Given these statistics, it's reasonable to ask how the impact of computers continues to grow expo-
nentially. Part of the answer, I think, is that a substantial number of these “failed” projects are ill-
conceived in the first place. Customers lose interest quickly (because what they've requested
wasn't really as important as they first thought), and the projects are cancelled.

CHAPTER 21 PROJECT MANAGEMENT 631

e projects are simple and routine, like driving fo
like driving o fruck off-road, in the mountains, o

To avoid project failure, a software project manager and the software engineers
who build the product must heed a set of common warning signs, understand the
critical success factors that lead to good project management, and develop a com-
monsense approach for planning, monitoring, and controlling the project. Each of
these issues is discussed in Section 21.5 and in the chapters that follow.

In a study published by the IEEE [CURS88], the engineering vice presidents of three
major technology companies were asked the most important contributor to a suc-
cessful software project. They answered in the following way:

VP 1: 1guess if you had to pick one thing out that is most important in our environment,
I'd say it's not the tools that we use, it's the people.

VP 2: The most important ingredient that was successful on this project was having
smart people . . . very little else matters in my opinion . . . The most important thing you
do for a project is selecting the staff . . . The success of the software development orga-
nization is very, very much associated with the ability to recruit good people.

VP 3: The only rule I have in management is to ensure 1 have good people—real good
people—and that I grow good people—and that I provide an environment in which good
people can produce.

Indeed, this is a compelling testimonial on the importance of people in the software
engineering process. And yet, all of us, from senior engineering vice presidents to
the lowliest practitioner, often take people for granted. Managers argue (as the pre-
ceding group had) that people are primary, but their actions sometimes belie their
words. In this section we examine the stakeholders who participate in the software
process and the manner in which they are organized to perform effective software
engineering.

21.2.1 The Stakeholders
The software process (and every software project) is populated by stakeholders who
can be categorized into one of five constituencies:
1. Senior managers who define business issues that often have significant influ-
ence on the project.

2. Project (technical) managers who must plan, motivate, organize, and control
the practitioners who do software work.

3. Practitioners who deliver the technical skills that are necessary to engineer a
product or application.

632

What do

we look for
when choosing
someone fo lead o
software project?

PART FOUR MANAGING SOFTWARE PROJECTS

4. Customers who specify the requirements for the software to be engineered
and other stakeholders who have a peripheral interest in the outcome.

5. End-users who interact with the software once it is released for production use.

Every software project is populated by people who fall within this taxonomy.? To be
effective, the project team must be organized in a way that maximizes each person’s
skills and abilities. And that'’s the job of the team leader.

21.2.2 Team Leaders

Project management is a people-intensive activity, and for this reason, competent
practitioners often make poor team leaders. They simply don't have the right mix of
people skills. And yet, as Edgemon states: “Unfortunately and all too frequently it
seems, individuals just fall into a project manager role and become accidental proj-
ect managers”[EDG95].

In an excelient book of technical leadership, Jerry Weinberg [WEI86] suggests a
MOI model of leadership:

Motivation. The ability to encourage (by “push or pull”) technical people to
produce to their best ability.

Organization. The ability to mold existing processes (or invent new ones) that
will enable the initial concept to be translated into a final product.

Ideas or innovation. The ability to encourage people to create and feel cre-
ative even when they must work within bounds established for a particular soft-
ware product or application.

Weinberg suggests that successful project leaders apply a problem solving manage-
ment style. That is, a software project manager should concentrate on understand-
ing the problem to be solved, managing the flow of ideas, and at the same time,
letting everyone on the team know (by words and, far more important, by actions)
that quality counts and that it will not be compromised.

one who knows where he wants to go, and gets up;

Another view [EDG95] of the characteristics that define an effective project man-
ager emphasizes four key traits:

Problem solving. An effective software project manager can diagnose the
technical and organizational issues that are most relevant, systematically structure
a solution or properly motivate other practitioners to develop the solution, apply

2 When Web applications are developed (Part 3 of this book), other nontechnical people may be in-
volved in content creation. '

What factors

should be
considered when
the structure of a
software team is
chosen?

CHAPTER 21 PROJECT MANAGEMENT 633

lessons learned from past projects to new situations, and remain flexible enough to
change direction if initial attempts at problem solution are fruitless.

Managerial identity. A good project manager must take charge of the project.
She must have the confidence to assume control when necessary and the assur-
ance to allow good technical people to follow their instincts.

Achievement. To optimize the productivity of a project team, a manager must
reward initiative and accomplishment and demonstrate through his own actions
that controlled risk taking will not be punished.

Influence and team building. An effective project manager must be able to
“read” people; she must be able to understand verbal and nonverbal signals and
react to the needs of the people sending these signals. The manager must remain
under control in high-stress situations.

21.2.3 The Software Tecun

There are almost as many human organizational structures for software develop-
ment as there are organizations that develop software. For better or worse, organi-
zational structure cannot be easily modified. Concern with the practical and political
consequences of organizational change are not within the software project man-
ager’s scope of responsibility. However, the organization of the people directly in-
volved in a software project is within the project manager’s purview.

The “best” team structure depends on the management style of your organization,
the number of people who will populate the team and their skill levels, and the over-
all problem difficulty. Mantei [MAN81] describes seven project factors that should be
considered when planning the structure of software engineering teams:

o The difficulty of the problem to be solved.

o The “size” of the resultant program(s) in lines of code or function points
(Chapter 22).

o The time that the team will stay together (team lifetime).

e The degree to which the problem can be modularized.

o The required quality and reliability of the system to be built.
o The rigidity of the delivery date.

o The degree of sociability (communication) required for the project.

W Be comperitive. If you want to be expone d

634

What

options do
we have when
defining the
structure of o
software team?

PART FOUR MANAGING SOFTWARE PROJECTS

Constantine [CON93] suggests four “organizational paradigms” for software en-
gineering teams:

1. A closed paradigm structures a team along a traditional hierarchy of authority.
Such teams can work well when producing software that is quite similar to
past efforts, but they will be less likely to be innovative when working within
the closed paradigm.

2. A random paradigm structures a team loosely and depends on individual ini-
tiative of the team members. When innovation or technological breakthrough
is required, teams following the random paradigm will excel. But such teams
may struggle when “orderly performance” is required.

3. An open paradigm attempts to structure a team in a manner that achieves
some of the controls associated with the closed paradigm but also much of
the innovation that occurs when using the random paradigm. Work is per-
formed collaboratively. Heavy communication and consensus-based decision
making are the trademarks of open paradigm teams. Open paradigm team
structures are well suited to the solution of complex problems but may not
perform as efficiently as other teams.

4. A synchronous paradigm relies on the natural compartmentalization of a
problem and organizes team members to work on pieces of the problem with
little active communication among themselves.

As an historical footnote, one of the earliest software team organizations was a
closed paradigm structure originally called the chief programmer team. This structure
was first proposed by Harlan Mills and described by Baker [BAK72]. The nucleus of
the team is composed of a senior engineer (the chief programmer), who plans, coor-
dinates, and reviews all technical activities of the team; technical staff (normally two
to five people), who conduct analysis and development activities; and a backup en-
gineer, who supports the senior engineer in his or her activities and can replace the
senior engineer with minimum loss in project continuity.

The chief programmer may be served by one or more specialists (e.g., telecom-
munications expert, database designer), support staff (e.g., technical writers, clerical
personnel), and a software librarian.

As a counterpoint to the chief programmer team structure, Constantine’s random
paradigm [CON93] suggests a software team with creative independence whose ap-
proach to work might best be termed innovative anarchy. Although the free-spirited
approach to software work has appeal, channeling creative energy into a high-
performance team must be a central goal of a software engineering organization. To
achieve a high-performance team:

What is a
“jelled”

team?

Q Why do
teams fail

to jell?

CHAPTER 21 PROJECT MANAGEMENT 635

¢ Team members must have trust in one another.
e The distribution of skills must be appropriate to the problem.

e Mavericks may have to be excluded from the team, if team cohesiveness is to
be maintained.

Regardless of team organization, the objective for every project manager is to
help create a team that exhibits cohesiveness. In their book, Peopleware, DeMarco
and Lister [DEM98] discuss this issue:

We tend to use the word team fairly loosely in the business world, calling any group of
people assigned to work together a “team.” But many of these groups just don't seem like
teams. They don't have a common definition of success or any identifiable team spirit.
What is missing is a phenomenon that we call jell.

A jelled team is a group of people so strongly knit that the whole is greater than the
sum of the parts . . .

Once a team begins to jell, the probability of success goes way up. The team can be-
come unstoppable, a juggernaut for success . . . They don't need to be managed in the
traditional way, and they certainly don't need to be motivated. They’'ve got momentum.

DeMarco and Lister contend that members of jelled teams are significantly more pro-
ductive and more motivated than average. They share a common goal, a common
culture, and in many cases, a “sense of eliteness” that makes them unique.

But not all teams jell. In fact, many teams suffer from what Jackman [JAC98] calls
“team toxicity.” She defines five factors that “foster a potentially toxic team environ-
ment”: (1) a frenzied work atmosphere, (2) high frustration that causes friction
among team members, (3) a “fragmented or poorly coordinated” software process,
(4) an unclear definition of roles on the software team, and (5) “continuous and re-
peated exposure to failure.”

To avoid a frenzied work environment, the project manager should be certain that
the team has access to all information required to do the job and that major goals
and objectives, once defined, should not be modified unless absolutely necessary. A
software team can avoid frustration (and stress) if it is given as much responsibility
for decision making as possible. An inappropriate process (e.g., unnecessary or bur-
densome work tasks or poorly chosen work products) can be avoided by under-
standing the product to be built and the people doing the work, and by allowing the
team to select its own process model. The team itself should establish mechanisms
for accountability (formal technical reviews and pair programming are excellent
ways to accomplish this) and define a series of corrective approaches when a mem-
ber of the team fails to perform. And finally, the key to avoiding an atmosphere of
failure is to establish team-based techniques for feedback and problem solving.

636

PART FOUR MANAGING SOFTWARE PROJECTS

In addition to the five toxins described by Jackman, a software team often strug-
gles with the differing human traits of its members. Some team members are extro-
verts; others are introverted. Some people gather information intuitively, distilling
broad concepts from disparate facts. Others process information linearly, collecting
and organizing minute details from the data provided. Some team members are
comfortable making decisions only when a logical, orderly argument is presented.
Others are intuitive, willing to make a decision based on “feel.” Some practitioners
want a detailed schedule populated by organized tasks that enable them to achieve
closure for some element of a project. Others prefer a more spontaneous environ-
ment in which open issues are okay. Some work hard to get things done long before
a milestone date, thereby avoiding stress as the date approaches, while others are
energized by the rush to make a last minute deadline. A detailed discussion of the
psychology of these traits and the ways in which a skilled team leader can help peo-
ple with opposing traits to work together is beyond the scope of this book.> However,
it is important to note that recognition of human differences is the first step toward
creating teams that jell.

21.2.4 Agile Teams

In recent years, agile software development (Chapter 4) has been proposed as a an-
tidote to many of the problems that have plagued software project work. To review,
the agile philosophy encourages customer satisfaction and early incremental deliv-
ery of software; small highly motivated project teams; informal methods; minimal
software engineering work products, and overall development simplicity.

The small, highly motivated project team, also called an agile team, adopts many
of the characteristics of successful software project teams discussed in the preceding
section and avoids many of the toxins that create problems. However, the agile phi-
losophy stresses individual (team member) competency coupled with group collabo-
ration as critical success factors for the team. Cockburn and Highsmith [COCO1] note
this when they write:

If the people on the project are good enough, they can use almost any process and ac-
complish their assignment. If they are not good enough, no process will repair their in-
adequacy—"people trump process” is one way to say this. However, lack of user and
executive support can kill a project—"politics trump people.” Inadequate support can
keep even good people from accomplishing the job . . .

To make effective use of the competencies of each team member and to foster ef-

fective collaboration through a software project, agile teams are self-organizing. A
self-organizing team does not necessarily maintain a single team structure but in-

3 An excellent introduction to these issues as they relate to software project teams can be found in
[FER98].

o
Ve,
POINT
An agile team is a self-
organizing team that
has autonomy fo plan
and make technical
decisions.

CHAPTER 21 PROJECT MANAGEMENT 637

stead uses elements of Constantine’s random, open, and synchronous paradigms
discussed in Section 21.2.3.

hing more than on instantiation of the idea that producis s
ks who make up the team.” .

Many agile process models (e.g., Scrum) give the agile team significant auton-
omy to make the project management and technical decisions required to get the
job done. Planning is kept to a minimum, and the team is allowed to select its own
approach (e.g., process, methods, tools), constrained only by business require-
ments and organizational standards. As the project proceeds, the team self-
organizes to focus individual competency in a way that is most beneficial to the
project at a given point in time. To accomplish this, an agile team might conduct
brief daily team meetings to coordinate and synchronize the work that must be ac-
complished for that day.

Based on information obtained during these meetings, the team adapts its ap-
proach in a way that accomplishes an increment of work. As each day passes, con-
tinual self-organization and collaboration move the team toward a completed
software increment.

21.2.5 Coordination and Communication Issues

There are many reasons that software projects get into trouble. The scale of many
development efforts is large, leading to complexity, confusion, and significant diffi-
culties in coordinating team members. Uncertainty is common, resulting in a con-
tinuing stream of changes that ratchets the project team. Interoperability has
become a key characteristic of many systems. New software must communicate with
existing software and conform to predefined constraints imposed by the system or
product.

These characteristics of modern software—scale, uncertainty, and interoper-
ability—are facts of life. To deal with them effectively, a software engineering team
must establish effective methods for coordinating the people who do the work. To
accomplish this, mechanisms for formal and informal communication among
team members and between multiple teams must be established. Formal commu-
nication is accomplished through “writing, structured meetings, and other rela-
tively noninteractive and impersonal communication channels” [KRA95]. Informal
communication is more personal. Members of a software team share ideas on an
ad hoc basis, ask for help as problems arise, and interact with one another on a
daily basis.

638 PART FOUR MANAGING SOFTWARE PROJECTS

Marketing defines the
produced—in consultation v

jo

Gt et CPPOR e
hm, who's Vinod: But keep mﬁfm

absolute minimum.

e philosophy, Doug, | hink Doug: Who s the lci

line and some of he's got the most experi
feel free to talk to any of u

Doug (laughing):

A software project manager is confronted with a dilemma at the very beginning of a
software engineering project. Quantitative estimates and an organized plan are re-
quired, but solid information is unavailable. A detailed analysis of software require-
ments would provide necessary information for estimates, but analysis often takes
weeks or months to complete. Worse, requirements may be fluid, changing regularly
as the project proceeds. Yet, a plan is needed “now!”

Therefore, we must examine the product and the problem it is intended to solve
at the very beginning of the project. At a minimum, the scope of the product must be
established and bounded.

21.3.1 Software Scope

The first software project management activity is the determination of software
scope. Scope is defined by answering the following questions:

Context. How does the software to be built fit into a larger system, product, or
business context, and what constraints are imposed as a result of the context?

Cova

If you can’t bound o
characteristic of the
software you intend fo
build, list the character-
Istic as a project risk
(Chapter 25).

epwcsg

To develop a reason-
oble project plan, you
must decompose the
problem. This can be
accomplished using a
list of functions, or
with use-cases, or for
ogile work, user
stories.

CHAPTER 21 PROJECT MANAGEMENT 639

Information objectives. What customer-visible data objects (Chapter 8) are
produced as output from the software? What data objects are required for input?

Function and performance. What functions does the software perform to
transform input data into output? Are there any special performance characteris-
tics to be addressed?

Software project scope must be unambiguous and understandable at the manage-
ment and technical levels. A statement of software scope must be bounded. That is,
quantitative data (e.g., number of simultaneous users, size of mailing list, maximum
allowable response time) are stated explicitly; constraints and/or limitations (e.g.,
product cost restricts memory size) are noted, and mitigating factors (e.g., desired
algorithms are well understood and available in C++) are described.

21.3.2 Problem Decomposition

Problem decomposition, sometimes called partitioning or problem elaboration, is an
activity that sits at the core of software requirements analysis (Chapters 7 and 8).
During the scoping activity no attempt is made to fully decompose the problem.
Rather, decomposition is applied in two major areas: (1) the functionality that must
be delivered and (2) the process that will be used to deliver it.

Human beings tend to apply a divide-and-conquer strategy when they are con-
fronted with a complex problem. Stated simply, a complex problem is partitioned
into smaller problems that are more manageable. This is the strategy that applies as
project planning begins. Software functions, described in the statement of scope, are
evaluated and refined to provide more detail prior to the beginning of estimation
(Chapter 23). Because both cost and schedule estimates are functionally oriented,
some degree of decomposition is often useful.

As an example, consider a project that will build a new word-processing product.
Among the unique features of the product are continuous voice as well as keyboard
input, extremely sophisticated “automatic copy edit” features, page layout capability,
automatic indexing and table of contents, and others. The project manager must first
establish a statement of scope that bounds these features (as well as other more
mundane functions such as editing, file management, document production, and the
like). For example, will continuous voice input require that the product be “trained”
by the user? Specifically, what capabilities will the copy edit feature provide? Just
how sophisticated will the page layout capability be?

As the statement of scope evolves, a first level of partitioning naturally occurs. The
project team learns that the marketing department has talked with potential cus-
tomers and found that the following functions should be part of automatic copy edit-
ing: (1) spell checking, (2) sentence grammar checking, (3) reference checking for
large documents (e.g., Is a reference to a bibliography entry found in the list of entries
in the bibliography?), and (4) section and chapter reference validation for large

PART FOUR MANAGING SOFTWARE PROJECTS

documents. Each of these features represents a subfunction to be implemented in
software. Each can be further refined if the decomposition will make planning easier.

CovaB

An automated project
scheduling tool can be
used fo create @ “tosk
network” (Chapter
24). The network is
loaded with estimated
Tesource requirements,
start/end dotes, and
other pertinent dato.
This resource loaded
network con then be
used for project
tracking ond control,

The framework activities (Chapter 2) that characterize the software process are ap-
plicable to all software projects. The problem is to select the process model that is
appropriate for the software to be engineered by a project team.

The project manager must decide which process model is most appropriate for
(1) the customers who have requested the product and the people who will do the
work, (2) the characteristics of the product itself, and (3) the project environment in
which the software team works. When a process model has been selected, the team
then defines a preliminary project plan based on the set of process framework ac-
tivities. Once the preliminary plan is established, process decomposition begins.
That is, a complete plan, reflecting the work tasks required to populate the frame-
work activities, must be created. We explore these activities briefly in the sections
that follow and present a more detailed view in Chapter 24.

21.4.1 Melding the Product and the Process

Project planning begins with the melding of the product and the process. Each func-
tion to be engineered by the software team must pass through the set of framework
activities that have been defined for a software organization. Assume that the or-
ganization has adopted the following set of framework activities (Chapter 2): com-
munications, planning, modeling, construction, and deployment.

The team members who work on a product function will apply each of the frame-
work activities to it. In essence, a matrix similar to the one shown in Figure 21.1 is
created. Each major product function (the figure notes functions for the word-

Melding the
problem and
the process

COMMON PROCESS
FRAMEWORK ACTIVITIES

Software Engineering Tasks
Product Functions)
Tedinput’ ;
Edifing ond formatting
Automatic copy edit
Automatic indexing and TOC
[_File manogement _
Document production . -

——l

%
e,

POINT
The process fromewaork
establishes o skeleton
for project planning. It
is adapted by
allocating a task set
that is appropriate to
the project.

CHAPTER 21 PROJECT MANAGEMENT 641

processing software discussed earlier) is listed in the left-hand column. Framework
activities are listed in the top row. Software engineering work tasks (for each frame-
work activity) would be entered in the following row.* The job of the project man-
ager (and other team members) is to estimate resource requirements for each matrix
cell, start and end dates for the tasks associated with each cell, and work products
to be produced as a consequence of each task. These activities are considered in
Chapter 24.

21.4.2 Process Decomposition

A software team should have a significant degree of flexibility in choosing the soft-
ware process model that is best for the project and the software engineering tasks
that populate the process model once it is chosen. A relatively small project that is
similar to past efforts might be best accomplished using the linear sequential ap-
proach. If very tight time constraints are imposed and the problem can be heavily
compartmentalized, the RAD model is probably the right option. If the deadline is so
tight that full functionality cannot reasonably be delivered, an incremental strategy
might be best. Similarly, projects with other characteristics (e.g., uncertain require-
ments, breakthrough technology, difficult customers, significant reuse potential) will
lead to the selection of other process models.®

Once the process model has been chosen, the process framework is adapted Lo it.
In every case, the generic framework discussed earlier—communication, planning,
modeling, construction, and deployment—can be used. It will work for linear mod-
els, for iterative and incremental models, for evolutionary models, and even for con-
current or component assembly models. The process framework is invariant and
serves as the basis for all software work performed by a software organization.

But actual work tasks do vary. Process decomposition commences when the proj-
ect manager asks, “How do we accomplish this framework activity?” For example, a
small, relatively simple project might require the following work tasks for the com-
munication activity:

Develop list of clarification issues.
Meet with customer to address clarification issues.

Jointly develop a statement of scope.

N =

Review the statement of scope with all concerned.
5. Modify the statement of scope as required.

These events might occur over a period of less than 48 hours. They represent a
process decomposition that is appropriate for the small, relatively simple project.

4 1t should be noted that work tasks must be adapted to the specific needs of the project.
5 Recall that project characteristics also have a strong bearing on the structure of the software team
(Section 21.2.3).

642

Q‘ What are the
® signs that a
software project
is in jeopardy?

PART FOUR MANAGING SOFTWARE PROJECTS

1

Now, we consider a more complex project, which has a broader scope and more
significant business impact. Such a project might require the following work tasks
for the communication activity:

8.
9.
0.

Review the customer request.

Plan and schedule a formal, facilitated meeting with the customer.

Conduct research to specify the proposed solution and existing approaches.
Prepare a “working document” and an agenda for the formal meeting.
Conduct the meeting.

Jointly develop mini-specs that reflect data, function, and behavioral features
of the software. Alternatively, develop use-cases that describe the software
from the user’s point of view.

Review each mini-spec or use-case for correctness, consistency, and lack of
ambiguity.

Assemble the mini-specs into a scoping document.

Review the scoping document or collection of use-cases with all concerned.

Modify the scoping document or use-cases as required.

Both projects perform the framework activity that we call “communication,” but the
first project team performed half as many software engineering work tasks as the
second.

To manage a successful software project, we must understand what can go wrong
(so that problems can be avoided). In an excellent paper on software projects, John
Reel [REE99] defines 10 signs that indicate that an information systems project is in
jeopardy:

ot

© ¥ ® N o G; ok w N o=

Software people don't understand their customer’s needs.
The product scope is poorly defined.

Changes are managed poorly.

The chosen technology changes.

Business needs change [or are ill-defined].

Deadlines are unrealistic.

Users are resistant.

Sponsorship is lost [or was never properly obtained].

The project team lacks people with appropriate skills.

Managers [and practitioners] avoid best practices and lessons learned.

CHAPTER 21 PROJECT MANAGEMENT 643

Jaded industry professionals often refer (half-facetiously) to the 90-90 rule when
discussing particularly difficult software projects: The first 90 percent of a system ab-
sorbs 90 percent of the allotted effort and time. The last 10 percent takes the other
90 percent of the allotted effort and time [ZAH94]. The seeds that lead to the 90-90
rule are contained in the signs noted in the preceding list.

_ ‘Wo don't have fime to stop for gas, we're already late.”

o

But enough negativity! How does a manager act to avoid the problems just noted?
Reel [REE99] suggests a five-part common-sense approach to software projects:

1. Start on the right foot. This is accomplished by working hard (very hard) to
understand the problem that is to be solved and then setting realistic objec-
tives and expectations for everyone who will be involved in the project. It is
reinforced by building the right team (Section 21.2.3) and giving the team the
autonomy, authority, and technology needed to do the job.

2. Maintain momentum. Many projects get off to a good start and then slowly
disintegrate. To maintain momentum, the project manager must provide in-
centives to keep turnover of personnel to an absolute minimum, the team
should emphasize quality in every task it performs, and senior management
should do everything possible to stay out of the team'’s way.®

3. Track progress. For a software project, progress is tracked as work products
(e.g., models, source code, sets of test cases) are produced and approved (us-
ing formal technical reviews) as part of a quality assurance activity. In addi-
tion, software process and project measures (Chapter 22) can be collected
and used to assess progress against averages developed for the software de-
velopment organization.

4. Make smart decisions. In essence, the decisions of the project manager and the
software team should be to “keep it simple.” Whenever possible, decide to use
commercial off-the-shelf software or existing software components, decide to
avoid custom interfaces when standard approaches are available, decide to
identify and then avoid obvious risks, and decide to allocate more time than
you think is needed to complex or risky tasks (you'll need every minute).

5. Conduct a postmortem analysis. Establish a consistent mechanism for ex-
tracting lessons learned for each project. Evaluate the planned and actual
schedules, collect and analyze software project metrics, get feedback from
team members and customers, and record findings in written form.

6 The implication of this statement is that bureaucracy is reduced to a minimum, extraneous meet-
ings are eliminated, and dogmatic adherence to process and project rules is eliminated. The team
should be self-organizing and autonomous.

b How do
“® we define
key project
choracteristics?

PART FOUR MANAGING SOFTWARE PROJECTS

In an excellent paper on software process and projects, Barry Boehm [BOE96] states:
“you need an organizing principle that scales down to provide simple [project] plans
for simple projects.” Boehm suggests an approach that addresses project objectives,
milestones and schedules, responsibilities, management and technical approaches,
and required resources. He calls it the W°HH principle, after a series of questions that
lead to a definition of key project characteristics and the resultant project plan:

Why is the system being developed? The answer to this question enables all parties
to assess the validity of business reasons for the software work. Stated in another
way, does the business purpose justify the expenditure of people, time, and money?

What will be done? The answer to this question establishes the task set that will
be required for the project.

When will it be done? The answer to this question helps the team to establish a
project schedule by identifying when project tasks are to be conducted and when
milestones are to be reached.

Who is responsible for a function? Earlier in this chapter, we noted that the role
and responsibility of each member of the software team must be defined. The an-
swer to this question helps accomplish this.

Where are they organizationally located? Not all roles and responsibilities reside
within the software team itself. The customer, users, and other stakeholders also
have responsibilities.

How will the job be done technically and managerially? Once product scope is es-
tablished, a management and technical strategy for the project must be defined.

How much of each resource is needed? The answer to this question is derived by
developing estimates (Chapter 23) based on answers to earlier questions.

Boehm's W°HH principle is applicable regardless of the size or complexity of a soft-
ware project. The questions noted provide an excellent planning outline for the proj-
ect manager and the software team.

The Airlie Council” has developed a list of “critical software practices for performance-
based management.” These practices are “consistently used by, and considered criti-
cal by, highly successful software projects and organizations whose ‘bottom line’
performance is consistently much better than industry averages” [AIR99].

7 The Airlie Council is a team of software engineering experts chartered by the U.S. Department of
Defense to help develop guidelines for best practices in software project management and software
engineering.

CHAPTER 21 PROJECT MANAGEMENT 645

Critical practices® include: metrics-based project management (Chapter 22), empir-
ical cost and schedule estimation (Chapters 23 and 24), earned value tracking (Chap-
ter 24), formal risk management (Chapter 25), defect tracking against quality targets
(Chapter 26), and people-aware management (Section 21.2). Each of these critical
practices is addressed throughout Part 4 of this book.

Software Tools for Project Managers

e/

Q The “tools” listed here are generic and apply to with a direct indication of project status. The tool has
a broad range of activities performed by “gauges” much like a dashboard and is implemented

project managers. Specific project management tools with Microsoft Excel. It is available for download at

(e.g., scheduling tools, estimating tools, risk analysis tools) hitp:/ /www.spmn.com/products_software.html.

are considered in later chapters). Ganthead.com has developed a set of useful checklists for

project managers that can be downloaded from
Representative Tools® http:/ /www.ganithead.com/.
The Software Program Manager’s Network Ittoolkit.com (www.ittoolkit.com) provides “a collection of
(www.spmn.com) has developed a simple tool called planning guides, process templates and smart
k Project Control Panel which provides project managers worksheets” available on CD-ROM, /

Software project management is an umbrella activity within software engineering. It
begins before any technical activity is initiated and continues throughout the defini-
tion, development, and support of computer software.

Four P’s have a substantial influence on software project management-—people,

product, process, and project. People must be organized into effective teams, moti-
vated to do high-quality software work, and coordinated to achieve effective com-
munication. The product requirements must be communicated from customer to
developer, partitioned (decomposed) into their constituent parts, and positioned for
work by the software team. The process must be adapted to the people and the prob-
lem. A common process framework is selected, an appropriate software engineering
paradigm is applied, and a set of work tasks is chosen to get the job done. Finally, the
project must be organized in a manner that enables the software team to succeed.
The pivotal element in all software projects is people. Software engineers can be
organized in a number of different team structures that range from traditional
control hierarchies to “open paradigm” teams. A variety of coordination and com-
munication techniques can be applied to support the work of the team. In general,

8 Only those critical practices associated with “project integrity” are noted here.
9 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

PART FOUR MANAGING SOFTWARE PROJECTS

formal reviews and informal person-to-person communication have the most value
for practitioners.

The project management activity encompasses measurement and metrics, esti-
mation and scheduling, risk analysis, tracking, and control. Each of these topics is
considered in the chapters that follow.

[AIR99] Airlie Council, “Performance Based Management: The Program Manager’s Guide Based
on the 16-Point Plan and Related Metrics,” Draft Report, March 8, 1999.

[BAK72] Baker, F. T., "Chief Programmer Team Management of Production Programming,” IBM
Systems Journal, vol. 11, no. 1, 1972, pp. 56-73.

[BOE96] Boehm, B., “Anchoring the Software Process,” IEEE Software, vol. 13, no. 4, July 1996,
pp. 73-82.

[COCO1] Cockburn, A., and J. Highsmith, “Agile Software Development: The People Factor,” IEEE
Computer, vol. 34, no. 11, November 2001, pp. 131-133.

[CON93] Constantine, L., “Work Organization: Paradigms for Project Management and Organi-
zation,” CACM, vol. 36, no. 10, October 1993, pp. 34—43.

[COUBO} Cougar, J., and R. Zawacki, Managing and Motivating Computer Personnel, Wiley, 1980.

[CURS8S8] Curtis, B., et al., “A Field Study of the Software Design Process for Large Systems,” IEEE
Trans. Software Engineering, vol. SE-31, no. 11, November 1988, pp. 1268-1287.

[CUR94] Curtis, B., et al., People Management Capability Maturity Model, Software Engineering In-
stitute, 1994.

[DEM98] DeMarco, T., and T. Lister, Peopleware, 2nd ed., Dorset House, 1998.

[EDG95] Edgemon, J., “Right Stuff: How to Recognize It When Selecting a Project Manager,” Ap-
plication Development Trends, vol. 2, no. 5, May 1995, pp. 37-42.

[FER98] Ferdinandi, P. L., “Facilitating Communication,” IEEE Software, September 1998,
pp. 92-96.

JAC98] Jackman, M., “"Homeopathic Remedies for Team Toxicity,” IEEE Software, July 1998,
pp. 43-45.

[KRA95] Kraul, R., and L. Streeter, “Coordination in Software Development,” CACM, vol. 38,
no. 3, March 1995, pp. 69-81.

[MAN81] Mantei, M., “The Effect of Programming Team Structures on Programming Tasks,”
CACM, vol. 24, no. 3, March 1981, pp. 106-113.

[PAG85] Page-Jones, M., Practical Project Management, Dorset House, 1985, p. vii.

[REE99] Reel, J. S., “Critical Success Factors in Software Projects,” IEEE Software, May, 1999,
pp. 18-23.

[WEI86] Weinberg, G., On Becoming a Technical Leader, Dorset House, 1986.

[WIT94] Whitaker, K., Managing Software Maniacs, Wiley, 1994.

[ZAH94] Zahniser, R., “Timeboxing for Top Team Performance,” Software Development, March
1994, pp. 35-38.

21.1. The Software Engineering Institute’s people management capability maturity model (PM-
CMM) takes an organized look at “key practice areas” that cultivate good software people. Your
instructor will assign you one KPA for analysis and summary.

21.2. Describe three real-life situations in which the customer and the end-user are the same.
Describe three situations in which they are different.

21.3. Based on information contained in this chapter and your own experience, develop “10
commandments” for empowering software engineers. That is, make a list of 10 guidelines that
will lead to software people who work to their full potential.

CHAPTER 21 PROJECT MANAGEMENT 647

21.4. The decisions made by senior management can have a significant impact on the effec-
tiveness of a software engineering team. Provide five examples to illustrate that this is true.

21.5. You have been appointed a project manager for a major software products company.
Your job is to manage the development of the next generation version of its widely used word-
processing software. Because new revenue must be generated, tight deadlines have been es-
tablished and announced. What team structure would you choose and why? What software
process model(s) would you choose and why?

21.6. Do a first level functional decomposition of the page layout function discussed briefly in
Section 21.3.2.

21.7. You have been asked to develop a small application that analyzes each course offered by
a university and reports the average grade obtained in the course (for a given term). Write a
statement of scope that bounds this problem.

21.8. You have been appointed a project manager for a small software products company. Your
job is to build a breakthrough product that combines virtual reality hardware with state-of-the-
art software. Because competition for the home entertainment market is intense, there is sig-
nificant pressure to get the job done. What team structure would you choose and why? What
software process model(s) would you choose and why?

21.9. You have been appointed a software project manager for a company that services the ge-
netic engineering world. Your job is to manage the development of a new software product that
will accelerate the pace of gene typing. The work is R&D oriented, but the goal is to produce a
product within the next year. What team structure would you choose and why? What software
process model(s) would you choose and why?

21.10. Review a copy of Weinberg'’s book [WEI86] and write a two- or three-page summary of
the issues that should be considered in applying the MOI model.

21.11. You have been appointed a project manager within an information systems organiza-
tion. Your job is to build an application that is quite similar to others your team has built, al-
though this one is larger and more complex. Requirements have been thoroughly documented
by the customer. What team structure would you choose and why? What software process
model(s) would you choose and why?

The Project Management Institute (Guide to the Project Management Body of Knowledge, PMI,
2001) covers all important aspects of project management. Murch (Project Management: Best
Practices for IT Professionals, Prentice-Hall, 2000) teaches basic skills and provides detailed guid-
ance for all phases of an IT project. Lewis (Project Managers Desk Reference, McGraw-Hill, 1999)
presents a 16-step process for planning, monitoring, and controlling any type of project. Mc-
Connell (Professional Software Development, Addison-Wesley, 2004) offers pragmatic advice for
achieving “shorter schedules, higher quality products, and more successful projects.”

An excellent four-volume series written by Weinberg (Quality Software Management, Dorset
House, 1992, 1993, 1994, 1996) introduces basic systems thinking and management concepts;
explains how to use measurements effectively; and addresses “congruent action,” the ability to
establish “fit” between the manager’s needs, the needs of technical staff, and the needs of the
business. It will provide both new and experienced managers with useful information. Futrell
and his colleagues (Quality Software Project Management, Prentice-Hall, 2002) present a volumi-
nous treatment of project management.

Phillips (IT Project Management: On Track from Start to Finish, McGraw-Hill/
Osborne, 2002), Charvat (Project Management Nation, Wiley, 2002), Schwalbe (Information
Technology Project Management, second edition, Course Technology, 2001) and Holtsnider
and Jaffe (IT Manager's Handbook, Morgan Kaufmann Publishers, 2000) are representative of
the many books that have been written on software project management. Brown and his

PART FOUR MANAGING SOFTWARE PROJECTS

colleagues (AntiPatterns in Project Management, Wiley, 2000) discuss what not to do during
the management of a software project.

Brooks (The Mythical Man -Month, Anniversary Edition, Addison-Wesley, 1995) has updated
his classic book to provide new insight into software project and management issues. Mc-
Connell (Software Project Survival Guide, Microsoft Press, 1997) presents excellent pragmatic
guidance for those who must manage software projects. Purba and Shah (How to Manage a Suc
cessful Software Project, second edition, Wiley, 2000) present a number of case studies that indi-
cate why some projects succeed and others fail. Bennatan (On Time Within Budget, third edition,
Wiley, 2000) presents useful tips and guidelines for software project managers.

It can be argued that the most important aspect of software project management is people
management. Cockburn (Agile Software Development, Addison-Wesley, 2002) presents one of the
best discussions of software people written to date. DeMarco and Lister [DEM98] have written
the definitive book on software people and software projects. In addition, the following books
on this subject have been published in recent years and are worth examining:

Beaudouin-Lafon, M., Computer Supported Cooperative Work, Wiley-Liss, 1999.

Carmel, E., Global Software Teams: Collaborating Across Borders and Time Zones, Prentice Hall,
1999.

Constantine, L., Peopleware Papers: Nolcs on the Human Side of Software, Prentice-Hall, 2001 .

Humphrey, W. S., Managing Technical People: Innovation, Teamwork, and the Software Process,
Addison-Wesley, 1997.

Humphrey, W. S., Introduction to the Team Sofhwvare Process. Addison-Wesley, 1999.

Jones, P. H., Handbook of Team Design: A Practitioner's Guide lo Team Systems Development,
McGraw-Hill, 1997.

Karolak, D. S., Global Software Development: Managing Virtual Teams and Environments, 1EEE
Computer Society, 1998.

Ensworth (The Accidental Project Manager, Wiley, 2001} provides much useful guidance to
those who must survive “the transition from techie to project manager.” Another excellent book
by Weinberg {WEI86] is must reading for every project manager and every team leader. 1t will
give you insight and guidance that will enable you to do your job more effectively.

Even though they do not relate specifically to the software world and sometimes suffer from
over-simplification and broad generalization, best-selling “management” books by Bossidy (£x
ecution: The Discipline of Getting Things Done, Crown Publishing, 2002), Drucker (Management
Challenges for the 21st Century, Harper Business, 1999), Buckingham and Coffman (First, Break
All the Rules: What the World's Greatest Managers Do Differently, Simon and Schuster, 1999) and
Christensen (The Innovator’s Dilemma, Harvard Business School Press, 1997) emphasize “new
rules” defined by a rapidly changing economy. Older titles such as Who Moved My Cheese?, The
One-Minute Manager, and In Search of Excellence continue to provide valuable insights that can
help you to manage people and projects more effectively.

A wide variety of information sources on software project management is available on the
Internet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

Key
CONCEPTS

DRE
metrics
function-oriented
object-oriented
private
project
process
public
quality
size-oriented
use-case
WebApp
metrics baseline
metrics programs
SSPI

proved.

ments have mﬂ&d mmm
pinpoint prol areas 3o 2 n be
developed and the sofiware process can be

METRICS FOR PROCESS
AND PROJECTS

easurement enables us to gain insight into the process and the project
by providing a mechanism for objective evaluation. Lord Kelvin once
said:

When you can measure what you are speaking about and express it in numbers, you
know something about it; but when you cannot measure, when you cannot express it
in numbers, your knowledge is of a meager and unsatisfactory kind: it may be the be-
ginning of knowledge, but you have scarcely, in your thoughts, advanced to the stage
of a science.

The software engineering community has taken Lord Kelvin’s words to heart. But
not without frustration and more than a little controversy!

Measurement can be applied to the software process with the intent of im-
proving it on a continuous basis. Measurement can be used throughout a soft-
ware project to assist in estimation, quality control, productivity assessment, and
project control. Finally, measurement can be used by software engineers to help
assess the quality of work products and to assist in tactical decision-making as a
project proceeds (Chapter 15).

In their guidebook on software measurement, Park, Goethert, and Florac
[PAR96] note the reasons that we measure: (1) to characterize in an effort to gain
an understanding “of processes, products, resources, and environments, and to
establish baselines for comparisons with future assessments”; (2) to evaluate “to
determine status with respect to plans”; (3) to predict by “gaining understandings

#? Software metrics are analyzed
e m nagers. Measures

‘ engmeers
don’t measure,

649

PART FOUR MANAGING SOFTWARE PROJECTS

re that I’'ve done it right?
ng a consistent, yet simple measure-
at is never used fo assess, re-
dual performance.

of relationships among processes and products and building models of these rela-
tionships”; and (4) to improve by “identifyling] roadblocks, root causes, inefficiencies,
and other opportunities for improving product quality and process performance.”

Measurement is a management tool. If conducted properly, it provides a project
manager with insight. And as a result, it assists the project manager and the software
team in making decisions that will lead to a successful project.

%N
Yo,
POINT
Process metrics have
long-term impact. Their
infent is fo improve the
process itself. Project
metrics often
contribute to the
development of
process metics.

Process metrics are collected across all projects and over long periods of time. Their
intent is to provide a set of process indicators that lead to long-term software process
improvement. Project metrics enable a software project manager to (1) assess the sta-
tus of an ongoing project, (2) track potential risks, (3) uncover problem areas before
they go “critical,” (4) adjust work flow or tasks, and (5) evaluate the project team’s
ability to control quality of software work products.

Measures that are collected by a project team and converted into metrics for use
during a project can also be transmitted to those with responsibility for software
process improvement. For this reason, many of the same metrics are used in both
the process and project domain.

22.1.1 Process Metrics and Software Process Improvement

The only rational way to improve any process is to measure specific attributes of the
process, develop a set of meaningful metrics based on these attributes, and then use
the metrics to provide indicators that will lead to a strategy for improvement. But be-
fore we discuss software metrics and their impact on software process improvement,
it is important to note that process is only one of a number of “controllable factors
in improving software quality and organizational performance” [PAU%4].

Referring to Figure 22.1, process sits at the center of a triangle connecting three
factors that have a profound influence on software quality and organizational per-
formance. The skill and motivation of people has been shown [BOE81] to be the sin-
gle most influential factor in quality and performance. The complexity of the product
can have a substantial impact on quality and team performance. The technology
(i.e., the software engineering methods and tools) that populates the process also
has an impact. '

